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Abstract

In the setting of online learning, Implicit algorithms turn out to be highly suc-
cessful from a practical standpoint. However, the tightest regret analyses only
show marginal improvements over Online Mirror Descent. In this work, we shed
light on this behavior carrying out a careful regret analysis. We prove a novel
static regret bound that depends on the temporal variability of the sequence of
loss functions, a quantity which is often encountered when considering dynamic
competitors. We show, for example, that the regret can be constant if the tempo-
ral variability is constant and the learning rate is tuned appropriately, without the
need of smooth losses. Moreover, we present an adaptive algorithm that achieves
this regret bound without prior knowledge of the temporal variability and prove a
matching lower bound. Finally, we validate our theoretical ndings on classi ca-
tion and regression datasets.

1 Introduction

The online learningparadigm is a powerful tool to model common scenarios in the real world

when the data comes in a streaming fashion, for example in the case of time series. In the last
two decades there has been a tremendous amount of progress in this eld (see, e.g., [30, 13, 24],
for an introduction), which also led to advances in seemingly unrelated areas of machine learning
and computer science. In this setting, a learning agent faces the environment in a game played

agent chooses a mode{ from a convex seV. Then, a convex loss function is revealed by the
environment and the agent pays a l0gx). As usual in this setting, we do not make assumptions
about the environment, but allow it to be adversarial. The agent's goal is to minimize her regret
against any decision maker, i.e., the cumulative sum of her losses compared to the losses of an agent
which always commits to the same choice So, formally the regret against any2 V is de ned

as

X X
Rr(u), “t(Xt) t(u)

t=1 t=1
Much of the progress in this eld is driven by the strictly related model of Online Linear Opti-
mization (OLO): exploiting the assumption that the loss functions are convex, we can linearize them
using a rst-order approximation through its (sub)gradient and subsequently minimize the linearized
regret. For example, the well-known Online Gradient Descent (OGD) [38] simply uses the direction
of the negative (sub)gradient of the loss function to update its mo%el, multiplied by a given learning
rate. Usually, a properly tuned learning rate gives a regret boufq ofT ), which is also optimal.
On the other hand, we can choose to not use any approximation to the loss function and instead up-
date our model using directly the loss function rather than its subgradient [17]. This type of update is
known admplicit and algorithms designed in this way are known to have practical advantages [18].
Unfortunately, their theoretical understanding is still limited at this point.
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Our rst contribution (Section 5) in this paper is a re ned analysis of Implicit algorithms in the
framework of Online Mirror Descent (OMD). Doing this allows us to understand why Implicit algo-
rithms might practically work better compared to algorithms which use (sub)gradients in the update.
In particular, we describe how these algorithms can potentially incur only a constant regret if the
sequence of loss functions does not vary with time. In particular, we measure the hardness of the
sequence of loss functions with tesmporal variability which is de ned as

X
Vo, max “¢(x) ¢ 1(X): (1)

t=2 x2V
Our second contﬁibution (Section 6) is a new adaptive Implicit algorithm, Adalmplicit, which retains
the worst-cas®( T) regret bound but takes advantage of a slow varying sequence of loss functions
and achieve a regret 6f(Vr +1) . Also, we prove a lower bound which shows that our algorithm is
optimal. Finally, in order to show the bene ts of using Implicit algorithms in practice, in Section 7
we conduct an empirical analysis on real-world datasets in both classi cation and regression tasks.

2 Related Work

Implicit Updates. The implicit updates in online learning were proposed for the rst time by Kivi-
nen and Warmuth [17]. However, such update with the Euclidean divergence is the Proximal update
in the optimization literature dating back at least to 1965 [22, 19, 29, 27], and more recently used
even in the stochastic setting [33, 2]. Later, this idea was re-invented by Crammer et al. [11] for
the speci ¢ case of linear prediction with losses that have a range of values in which they are zero,
e.g., hinge loss and epsilon-insensitive loss. Implicit updates were also used for online learning
with kernels [9] and to deal with importance weights [16]. Kulis and Bartlett [18] provide the rst
regret bounds for implicit updates that match those of OMD, while McMahan [20] makes the rst
attempt to quantify the advantage of the implicit updates in the regret bound. Finally, Song et al.
[31] generalize the results in McMahan [20] to Bregman divergences and strongly convex functions,
and quantify the gain differently in the regret bound. Note that in [20, 31] the gain cannot be exactly
guanti ed, providing just a non-negative data-dependent quantity subtracted to the regret bound.

Adaptivity. Our new analysis hinges on the concepti@hporal variabilityV; of the losses, a
guantity rst de ned in Besbes et al. [5] in the context of non-stationary stochastic optimization
and later generalized in Chen et al. [8]. In general, the temporal variability has been used in works
considering dynamic environments [e.g., 15, 37, 3, 36]. In particular, Jadbabaie et al. [15] consider
different notions of adaptivity at the same timqj if we consider the static regret case with no op-

P
timistic updates, then their bound givRs = O( th1 kg k% + 1), which is never better than

ours. At rst sight, our algorithm seems to achieve the same constant regret bound of Optimistic
algorithms [10, 28] if the sequence of loss functions is such¥hat O(1). However, for this

result Optimistic algorithms need either smooth or linear loss functions. In contrast, our algorithm
does not need this assumption. Other examples of adaptivity to the sequence of loss functions can
be found in [14, 32], which consider bounds in terms of the variance of the sequence of linear losses.

Finally, it is worth mentioning that recently there have been attempts to analyze Implicit algorithms
in dynamic environments [see, e.g., 12, 1, 7]. Nevertheless, these works are not directly compa-
rable to ours since they either consider a different (noisy) setting and competitor or make stronger
assumptions (i.e. smoothness and/or strong convexity of the loss functions).

3 De nitions

For a functionf : R4! (1 ;+1 ], we de ne asubgradienboff inx 2 RY as a vectog 2 R¢
that satisesf (y) f(x)+ hg;y xi; 8y 2 RY. We denote the set of subgradientd dh x by
@1x). Theindicator function of the sef, iy : RY! (1 :+1 ],isdenedas

0; X 2V;

v (x) = +1 ; otherwise.

We denote thelual normof k k by k k. A proper functionf : R9! (1 ;+1 ]is -strongly
convexover a convex sey intdomf w.rt. k kif 8x;y 2 V andg 2 @fx), we have



Algorithm 1 Implicit Online Mirror Descent (IOMD)

Require: Non-empty closed convexsét X RY, X! R, {>0,x12V

2:  Outputx; 2 V

3:  Receive'; :RY! Randpay(x;)

4:  Updatexi+1 =argmingoy B (X;X¢)+ ¢ ¢(x)
5: end for

fly) f(x)+ hgy xi+ 5kx yk?. Let : X ! R be strictly convex and continuously
differentiable onint X. The Bregman Divergencev.rt. isB :X intX ! Ry, denedas
B (x;y)= (x) (y) hr (y);x yi. We assume that is strongly convex w.r.t. a norm
k kinint X. We also assume w.l.0.g. the strong convexity constant to be 1, which implies

B (x;y) %kx yk?: 8x 2 X;y2intX: @)

4 Online Mirror Descent with Implicit Updates

In this section, we introduce the Implicit Online Mirror Descent (IOMD) algorithm, its relationship
with OMD, and some of its properties.

Considerasef X RY. The Online Mirror Descent [35, 4] update owéris
Xt+1 = arg mzl(ll B (x;x)+ (Ct(Xe)+ hgy;x xqi)=arg m2|r\1/ B (x;x¢)+ (hg;;xi;
X X
forg, 2 @;(x:) received as feedback. In words, OMD updates the solution minimizing a rst-order
approximation of the received loss, around the predicted point;, constrained to be not too far

from the predicted point measured with the Bregman divergence. It is well-known, [e.g. 24], that
the regret guarantee for OMD for a non-increasing sequence of learning rgtes is

X B (u;xy) B (u;xt+1)+xT

Rt (u) Etkgtkg; 8u2V: )

t=1 t t=1

This gives aO(p T) regret with, e.g.maxy.y2v B (X;y) < 1, Lipschitz losses, and / 1:p t.

A natural variation of the classic OMD update is to use the actual loss fungtigather than its
rst-order approximation. This is calleithplicit update[17] and is de ned as

Xt+1 =argmin B (X;X¢)+ ¢ ¢(X): 4)
X2V

Note that, in general, this update does not have a closed form, but for many interesting cases it is still
possible to ef ciently compute it. Notably, for = %k k2 and linear prediction with the square,

absolute, and hinge loss, these updates can all be computed in closed forid whBf [see, e.g.,

11, 18]. This update leads to the Implicit Online Mirror Descent (IOMD) algorithm in Algorithm 1.
We next show how the update in Eq. (4) yields new interesting properties which are not shared with
its non-implicit counterpart. Their proofs can be found in Appendix B.

Proposition 4.1. Letx+; be de ned as in Eq(4). Then, there existg® 2 @¢(Xt+1 ) such that

(X)) t(Xe+1) B (XeiXe)=t¢ 0 (5)
hegf+ 1 (Xes1) T (XU Xggi O 8u2V; (6)
hgdsXier  Xel W QX X @)

The rst property implies that, in contrast to OMD, the value of the loss functionin is always
smaller than or equal to its value 3. This means that, if; = °, the value (x) will be mono-
tonically decreasing over time. The second property gives an alternative way to write the update
rule expressed in Eq. (4). In particular, usingx) = 1kxk3 andV = RY the update becomes

Xt+1 = X¢ @Y, motivating the name “implicit”. Using this fact in the last propettye have that

with L, regularization, the dual norm gf is smaller than the dual norm gf, i.e. kg’k> k g.ko.

2Eq. (7) is nothing else than the fact that subgradients are monotone operators.



Let's gain some additional intuition on the implicit updates. Consider the case of RY and

(x) = 2k k3. We have thaks1 = X 0%, whereg? 2 @;(Xt+1). Now, if “¢+1 6
we would be updating the algorithm approximately with tiext subgradientOn the other hand,
knowing future gradients is a safe way to have constant regret. Hence, we can expect IOMD to have
low regret if the functions are slowly varying over time. In the next sections, we will see that this is
indeed the case.

5 Two Regret Bounds for IOMD

In the following, we will present a new regret guarantee for IOMD. First, we give a simple lemma
that provides a bound on the cumulative losses pétet the updates (proof in Appendix B).

Lemma5.1. LetV X  RY be a non-empty closed convex set. Retbe the Bregman diver-
gence w.r.t. : X ! R. Then, Algorithm 1 guarantees

X X X . .
Ven) ) BUXQ B (UiXe)

t=1 t=1 t=1

iB (Xt+1:X¢) 0 (8)

t t

t=1

Furthermore, assume thét;){_, is a non-increasing sequence andet, maxy.,2v B (uU;X).
Then the bound can further be expressed as

X R X . D?2 X 1
t(Xt+1) t(u)  — —B (Xt+1:Xt) " 9
t=1 t=1 L

P
Adding th1 “t(x¢) on both sides of Eq. (8), we immediately get our new regret bound.
Theorem 5.2. Under the assumptions of Lemma 5.1, the regret incurred by Algorithm 1 is bounded
as

X B (uix) B (uixin) X B (Xis1;X1)

t

Rt (u) X)) t(Xee1) (10)

t=1 t

t=1
We note that this result could also be extrapolated from [31], by carefully going through the proof of
their Lemma 1. However, as in the other previous work, they did not identify that the key quantity
to be used in order to quantify an actual gain is the temporal variabffifyas we will show later.

First Regret: Recovering OMD's Guarantee. To this point, the advantages of an implicit update
are still not clear. Thersfore, we now show how, from Theorem 5.2, one can get a possibly tighter
bound than the usu®( T). The key point in this new analysis is to introduggas de ned in
Proposition 4.1 and relate it to the Bregman divergence betweandx.; .

Theorem 5.3. Letg? 2 @;(Xt+1) satisfy Eq.(6). Assume to be 1-strongly convex w.r.k k.
Then, under the assumptions of Lemma 5.1, we have that Algorithm 1 satis es

B (Xinixd) kg, ko min - 2kg%ko; kg;k?
t

tx)  Tt(Xe1) ; 8t 0y 2 @c(xt): (11)

Proof. Using the convexity of the losses, we can bound the difference betfwgan and™; (X +1 ):
(X)) t(Xee1) hgoXe  Xead Kk gk kXe o X K;
whereg; 2 @¢(x+). Given that is 1-strongly convex, we can use Eq. (2) to obtain

q__
t(Xe)  t(Xee1) K gike 2B (Xpe1iXt) (12)

Note that'{(X¢) “t(Xt+1) B (X+1:Xt)=t t(Xt) “t(Xt+1). Hence, to get the rstterm

in the min of Eqg. (11), we can simply look for an upper bound on the ter®B (X(+1 ;X¢) in
Eq. (12) above. Using the fact that the Bregman divergence is convex in its rst argument, we get

B (Xts1:X¢) hr (Xthl)r (Xt);Xer1 Xeb h 9% X Xeeq koo kX ey Xtk

ikgko 2B (Xte1:X1);



where we used Eqg. (6) in the secoBd inequality and Eq. (2) in the last one. Solving this inequality
with respect td (Xi+1;Xt), we get 2B (Xg+1;Xt) 2 tkgPks.

For the second term, it suf ces to subtrd®t (x(+1 ;Xt)= ¢ on both sides of Eq. (12) and use the
fact thatbx %xz %;SX 2 Rwithx = B (Xt+1;Xt). O

This Theorem immediately gives us that Algorithm 1 has a regret upper-bounded by

X B (uix) B (uixe) , X kg, ke

Rr(u) : 5 ;

tkgike min - 2kgko;

(13)

t=1
whereg; 2 @;(x:). The presence of the minimum makes this bound equivalent in a worst-case
sense to the one of OMD in Eq. (3). Moreover, at least in the Euclidean case, from Eq. (7) we have
thatkggkz k g,kz. However, itis dif cult to quantify the gain over OMD because in gen&mk-
andkgk, are data-dependent. Hence, as in the other previous analyses, the gain over OMD would
be only marginal and not quanti able. This is not a limit of our analysis: it is easy to realize that in
the worst case the OMD update and the IOMD update can coincide. To show instead that a real gain
is possible, we are now going to take a different path.

t=1

Second Regret: Temporal Variability in IOMD. Here we formalize our key intuition that IOMD

is using an approximation of the future subgradient when the losses do not vary much over time. We
use the notion ofemporal variability of the losse¥r, as given in Eq. (1). Considering again our
regret bound in Theorem 5.2 and using=  for all t, we immediately have

. X .
Rt (u) B (Uixa) (U'X1)+ (X)) e(Xee1) B (eaixi)
t=1
B k) r(xraa) max “(x) 't 1(x) B X ix)
t=2
B (uixa)

+71(x1)  T(XTe1)+ Vo

This means that[ysing @onstant learning rate yields a regret bound@fVr + 1), which might

be better tharO(" T) if the temporal variability is low In particular, we can even get constant
regret ifVr = O(1). On the contrary, OMD cannot achieve a constant regret for any convex loss
even ifVr = 0, since it would imply an impossibl®(1=T) rate for non-smooth batch black-box
optimization [23, Theorem 3.2.1]. Instead, IOMD does not violate the lower bound since it is not a
black-box method. As far as we know, the connection between IOMD and temporal variability has
never been observed before. On the other hand, even when the temporaﬂ variability is high, we can
still use aO(1=T) learning rate to achieve a worst case regret of the ddderT).

We would like to point out that a similar behaviour arises friesliow The Regularized Leadaigo-

rithm (FTRL) employed with full losses, rather than linearized ones. We show a detailed derivation
in Appendix E. Unfortunately, contrarily to the OMD case employing FTRL would entail solving

a constrained convex optimization problem whose size (in terms of number of functions) grows
each step, that would have a high running time even when the implicit updates have closed form
expressions, e.g., linear classi cation with hinge loss.

Finally, a natural question arises: can we get a bound which interpolates bed{¥en+ 1) and

O( T),without any prior knowledge on the quantiy ? We give a positive answer to this question
by presenting an adaptive strategy in the next section.

6 Adapting to the Temporal variability with Adalmplicit
In this section, we present an adaptive strategy to set the learning rates, in order to give a regret
guarantee that depends optimally on the temporal variability.
From the previous section, we saw that the key quantity in the IOMD regret bound is
B (Xt+1:X¢t) |

t

t, t(Xt)  Tt(Xt+1) (14)



Algorithm 2 Adalmplicit

Require: Non-empty closed convexsét X RY, :X ! R, 1=0, 2>0,x12V

2:  Outputx; 2 V

3:  Receive; :RY! Randpay(x;)

4:  Updatexisy =argminyoy ((X)+ (B (X;X¢()
5. Sety= t(Xt) “t(Xt+1) 1B (Xt+1;X4)

6 Update {4+ = ¢+ L t

7: end for

Erom Eq. (5), we have that 0. At this point, one might think of using a doubling trick: monitor

i_, i over time and restart the algorithm with a different learning rate once it exceeds a certain
threshold. In Appendix A, we show that it is indeed possible to use such a strategy. However,
while theoretically effective, we can't expect the doubling trick to have any decent performance in
practice. Consequently, we are going to show how to use insteadagptivelearning rate.

Adalmplicit. Dene D? , maxy.u2v B (u;x) and assum® < 1 . For ease of notation, we
let = 1= where . will be decided in the following. Assuming ;){_; to be an increasing
sequence, from Theorem 5.2 we get

X
Rr(u) D? 1+ [t(xt)  “t(Xte2) B (X1 :Xe)] - (15)
t=1
Ideally, to minimize the regret we would like to have to Be as close as possible to the sum over

time in the r.h.s. of this expression. However, settind <=1 i Would introduce an annoying
recurrence in the computation of. To solve this issue, we @(plore the same strategy adopted in

AdaFTRL [25], adapting it to the OMD case: we sgt; = % itzl i fort 2, for a parameter

to be de ned later, and; = 0. We call the resulting algorithm Adalmplicit and describe it
in Algorithm 2. Before proving a regret bound for it, we rst provide a technical lemma for the
analysis. This lemma can be found in [24, 26] and for completeness we give a proof in Appendix B.

Lemma 6.1. Let fa;gl.; be any sequence of non-negative real numbers. Suppose that
f (g, is a sequence of non-negative real numbers satisfyirﬂa: 0 and® (41 ¢+

LS
min ba; ca?=(2 ) ,foranyt 1. Then,foranyT 0; 7141 (R+c) [, a2

We are now ready to prove a regret bound for Algorithm 2.

Theorem 6.2. Let V X RY be a non-empty closed convex set. Bet be the Bregman
divergence w.rt. @ X ! R and letD? = maxy.,2v B (u;x). Assume to be l-strongly
convex with respect o kinV. Then, forany 2 V, running Algorithm 2 with = D guarantees

8 v 9
< ﬁ NG =

Rr(u) min_ 2(1(x1) “t(Xt«)+ Vr);2D° 3 kgiks, | 89y 2 '((x¢): (16)
) t=1 ’

Proof. Using the de nition of ; and the fact that the sequer(ce)tT;l1 is increasing over time, the

regret in Eq. (15) can be upper boundedRagu) (D?+ ?2) 1.1 . Therefore, we need an upper
bound on 1.1 . We split the proof in two parts, one for each term in thia in Eq. (16). For the
rst term, using the de nition of ; we have

21y = [1(Xt)  “t(Xt+1) B (Xe1 3 X¢)]
t=1

T1(x1)  Tr(XTs) 0 [e(xe)  Teoa(x)] a(X1) Tt (XTer)+ Vi
t=2

3with a small abuse of notation, letin(x; y=0) = x.



from which using # = D the result follows.
For the second term, from Lemma 5.3 for ¢ > 2 we have §; < %. On the other hand,
0 = by(@y) — be(@g1) — M By (g1, @) < Le(xy) — (1) < (g, ®e — Tig1)

< llgillllze = @esr]| < V2Dlgy]l.,

where in the last step we used Eq. (2) and the definition of D. Therefore, putting the last two results
together we get

b < min (VEDllg Il lgil2/20)) . Va, € Oa(w)
Note that ;1 = A\ + %5,5. Hence, A\; = 0, Ao = ({1(x1) — ¢1(x2))/B% < V2D||g,||/B?, and

ﬁ t = t+@mln ||gt||*7 2)\; ) -
1

Therefore, using Lemma 6.1 with A, = A, b = \/B%D and c = 55, ar = [|gy[+, we get

Atr1 = A +

T
Ay < 4| 2D%/84+1/82) ) llg.3,
t=1

from which setting 8 = D we obtain the second term in the min in Eq. (16). O

This last theorem shows that Algorithm 2 can have a low regret if the temporal variability of the
losses Vr is low. Moreover, differently from Optimistic Algorithms, Algorithm 2 does not need
additional assumptions on the losses (for example smoothness), as done for example in [15].

Lower Bound. Next, we are going to prove a lower bound in terms of the temporal variability
Vr, which shows that the regret bound in Theorem 6.2 cannot be improved further. The proof is a
simple modification of the standard arguments used to prove lower bounds for constrained OLO and
is reported in Appendix B.

Theorem 6.3. Letd > 2, || - || an arbitrary norm on R%, and V = {x € R : ||z| < D/2}. Let A
be a deterministic algorithm on V. Let T be any non-negative integer. Then, for any Vi > 0, there
exists a sequence of convex loss functions £1(x), . .., Lr(x) with temporal variability equal to V.
and w € V such that the regret of algorithm A satisfies Ry (u) > V.

7 Empirical results

In this section, we compare the empirical performance of our al- 10% Slow varying losses
gorithm Adalmplicit with standard baselines in online learning:
OGD [38], OGD with adaptive learning rate 1, = ———2—— :
1) P e = e
(AdaOGD) [21], and IOMD with 7, = 3/+/t (Implicit) [18]. Hy

—— Adalmplicit
Implicit

Synthetic Experiment. We first show the benefits of Adalm-
plicit on a synthetic dataset. The loss functions are chosen to 10-3 Ad20GD
have a small temporal variability V. In particular, we consider — 0GD

a 1-d case using £, (z) = 1 (z — y;)? with y, = 100 sin(7 7). 0 500 1000 1500 2000
a time horizon 1" = 2000 and the L ball of diameter D = 150.
We set 5 = 1 in all algorithms. The update of the implicit al-

gorithms can be computed in closed form: x;1; = x; — 2%? (¢ — y¢). In Fig. 1 we show the

cumulative loss Ly = ZL £, (x4) of the algorithms (note that the y-axis is plotted in logarith-
mic scale). From the figure we can see that, contrarily to the other algorithms, the cumulative loss
of Adalmplicit grows slowly over time, reflecting experimentally the bound given in Theorem 6.2.
Also, even if not directly observable, OGD and IOMD basically incur the same total cumulative
loss.

Figure 1: Synthetic experiment.

Real world datasets. We are now going to show some experiments conducted on real data. Here,
there is no reason to believe that the temporal variability is small. However, we still want to verify






Broader Impact

We believe our investigation will foster further studies promoting the adoption of adaptive learning
rates in online learning and beyond. Indeed, in recent years adaptive methods in optimization proved
to be one of the preferred methods for training deep neural networks. On the other hand, this work
con rm the robustness of implicit updates and opens up to new possibilities in this eld. From a
societal aspect, this work in mainly theoretical and does not present any foreseeable consequence.
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